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Tt 15 shown that. for == -t and wu=1.2.., the  sequence
(n+ (x+ 1)2) v, — v increases with n. where v, = x'2' denotes the kth zero of
the gencralized Laguerre polynomial, in increasing order. As a conscquence of this
result, the inequality X, %, 0 < Nu . Xy s = 10200 I<hk<hk+l<n, is
established. Similar results are proved for the zeros of Hermite polynomials. The
principal tool used is Sturm’s comparison theorem in a variation due to Szegd.
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. INTRODUCTION

For o> —1 and n=1,2,., let x, =x!7 denote the kth zero of the
generalized Laguerre polynomial L!*)(x), in increasing order.

A well-known result asserts that x,, is positive and decreases with
increasing n. Moreover, Szego established [6, p. 129] the stronger property
that (n — (2 + 1)/2) x,, decreases with increasing n, ie.,

by

2+ 1 o+ D
<n+—7—)x,,k><n+1+—).\‘,,,M, a>—1, k=12..n (1.1)
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Similar investigations were made in [1, p. 251] where, among other
things, it was shown that, for fixed &, (n+(x+1)/2) (x, 0401 —X%)
decreases with increasing ». Clearly this result recovers Lorch’s result [4]
that x,, , , — x,, decreases with n provided —1 <a < 1.

It is worth mentioning that the proofs of every result recalled above is
based on the Sturm comparison theorem in the following Szegd’s form [6,

p. 19].

LEMMA.  Let the functions v(x) and Y(x) be nontrivial solutions of the dif-
Jferential equations

VYo flx)r=0, Y+ F(x)Y=0

and let them have consecutive zeros at X,, X, X, and X |, X5,..., X, respec-
tively: on an interval {a, b). Suppose that [ and F are continuous, that

J(x)y< Flx), A< Y <X

"

and that

lim [ () V()= r(x) Y(x)] =0 (1.2)

Then
X, <xy, k=12 n.
This Lemma will be useful also in the proofs of Theorems 1.1-1.2 of the
present paper where we are interested in the monotonicity results in # of

quantity (n+(x+1)/2) x,, —ix2,, n=1,2,.. and in the determinantal
inequality

ok Xk +1 < 0

Xt 1.A Xy + 1A+ 1

Precisely we shall prove the following results:

THEOREM 1.1. For —1<a<land k=1,2,.., n let x,, =x% be the kth
positive zero of the generalized Laguerre polynomial L'¥(x) in increasing
order. Then (n+ (x+1)/2) x,, — X2, increases with n, ie.,

o+ 1 r o+ 1 -
n+l+T .\‘,,+1‘,\,~Z,Y;+14,‘.> n—l——2~— Xk = 7 Xk (1.3)
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THEOREM 1.2, For a fixed o, —1 <o <1 and k=1,2...,n, let x,; =x'3
be defined as above. Then the following determinantal inequality

.\’A y\’:’ - l
" M l<0, I<k<k+1<n m=1,2.. (14)
Xtk Xtk 41

holds.

We observe that results similar to (1.4) have been proved for the positive
zeros of ultrapherical polynomials [27], zeros of Bessel functions [5] and
the derivative of Bessel functions [3].

2. PROOF OF THE THEOREMS

The function y=y, (x)=e¢ ““x*"D2L=(x) satisfies the differential
equation [ 6, p. 100]
»o fx) y =0, (2.1)

where

o+ 1

n+ 5
2 | —o” 1

Salx)= —t T (2.2)

Let us carry out the following transformation
y(x)=alx):z(r) (2.3)
1= [ b(x) dx (2.4)

Yy

where a(x), b(x) are positive, continuous, twice differentiable functions on
I=[x",x"]. fa’(x)b(x)=1on [, then z = z(r) is a solution of the differen-
tial equation

4 Fo(t)z=0 (2.5)

where

362 = 2bb" | f.4x)

FA=—p7—17

(2.6)

In the proofs of our theorems we shall use two transformations of (2.1).
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Proof of Theorem 1.1.  Let p,(x) be defined by

a+1 1,
p,,(x)=<n+ 3 ),\WZV\. {2.7)

It is clear that

+ 132
max  p,(x)=p,(%,)= (n + “—)

i SIS U 2

where
X,=2n+a+1
Moreover
Pn(X)>pu(X,) for %, <x<X, (2.8)
where

'\‘nl = fn + 2 - 4'{’/7 + 45 '%HE = -%/1 + 2 + N 4’{‘/1 + 4

Now we distinguish three cases:

("d) Yt < Ny 1.A < X2
(b) _{-”2 < Xy + 1.k
(C) 0<Xn—+l.A g'\w’n]'

On using (2.7), inequality (1.3} can be written as
pn("(nl\') < pn+ ](xu+ Lk)* k = 13 2*"'» n. (29)

Case a. By (2.8) we have immediately inequality (2.9).
Case b. By (1.1) we get

2n+a+1

X1k <Xy . " 0("‘_"_? ,

moreover by (2.7) the function p, . (x) decreases with respect to x on
[%,4 2, o). Therefore in order to prove (2.9) it is sufficient to show that
Pl X} < P (X (20 +a + 1)/(2n + a+ 3)), which can be verified by direct
computation.

Case ¢. In (2.3) we choose af{x) and h({x) as

)= () =n+ Yo+ 1) —hv alx)=a,(x)=[b(x)] "

640.512-6
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e —

Letting x"=0 in (24) we find that the function z,(r)=/b,(x) y,(x)
satisfies the differential equation

Y+ o) =0, (2.10)

where

—g* 3
7'1(’):%%*]37,}%; (2.11)
and
NEx =2+ et 1)~ \,‘Elrll + a4+ D] 1)
Besides (2.10) we consider the differential equation

w4+ F, () wly =0 (2.12)

satisfied by =, , (7). If we put x" =%, in (24) then A (x) and b, , (x) arc
positive on /=10, ¥, ]. Now we claim that (2.10) is a Sturmian majorant
of (2.12). This will be verified if we show that the functions «,(¢) b, (v} and
h,(x) are increasing with respect to 1. We get

AN RAN

- = — <0
n 2+ a4 —x
and
Ch,(x) n+a+ |
= — > 0.
n M+ a+1l—x
Moreover

X ()= [+ Yo+ ) — 7 - —hx

hence h,(x) and xh,(x) are both increasing with »#, when ¢ 1s fixed.

The limit condition (1.2) in Lemma is satisfied at r=0. Then an
application of Sturm comparison thecorem gives that between the zeros of
() and -, (¢) the inequalities

[n/\ < Iu W] A = l* 2 ----- n

hOld’ Where [::A - [)/1(—\‘.':,’( )» [n bk T [)n f 1('\:)1 + l,k)'
This completes the proof of Theorem 1.1

Proof of Theorem 1.2.  Applying the transformation 7= x/x,, in the dif-
ferential equation (2.1} (ic., b{x)=1/x,, 1 (2.4)) we find by (2.6) that the
function (1) =1 (x) satisfies

SN )z =0 (2.13)
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hence by (2.2)

n+ 3o+ 1) 1—2° 1

'YIZI/\'.}(;)('YHA [) = ! '\<nk + \ﬁ (2 1 4)

Besides (2.13) we consider the equation

Wt Lo, w=0 (2.15)

satisfied by z,,,(t)=v,,(x). The functions z,(7) and z,,,(r) have a
common zero at 1= 1. Moreover for r> 1 we have

l['Ys+ l‘k.fn } I(xn } ].kt) _'\-rzzk/‘n(“\'nkl)]

.

Sn+l+3a+ )]y, =5,
=+ D] X+ X,
and the right-hand side is positive in view of Theorem 1.1. Therefore (2.15)

is a Sturmian majorant of (2.13) and an application of Lemma gives that
the next zeros of =, (1) occur before the next zeros of -, (t), that is

vkt Yokt
”f e e [=1,2...n—k. (2.16)
'\/1 + |.A '\/1/\

This proves (1.4) for m = 1. Then step by step we obtain from (2.16) the
more general inequality

X X, .

Yad ok 4+ Mkl ,

SR R m=1,2,... (2.17)
Kot mk X ik

which completes the proof of Theorem 1.2.

Now we apply our results to the zeros of Hermite polynomials. Let &,
k=1, 2,.,[n/2] be the positive zeros of the Hermite polynomial H,(x) in
increasing order, ie., 0<&,,<&,,< - <&, [#/2]. An immediate con-
sequence of Theorem 1.2 is the following.

COROLLARY. Let &, (k=1,2,.,[n/2]) be the positive zeros of the
Hermite polynomial H,(x) in increasing order. Then the inequality

én,k Sk +1

v v
Cn + 2mk Cn +2mk + 1

<0

holds, for k=1,2,..,[n2] and m=1,2,....
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Proof. By the relations between Hermite polynomials and Laguerre
polynomials [6, p. 106]

H,(x)=(—1)"2"n!L}, 12)(x?)
Hay o (¥) = (= 1)72" X L)

we have

1.2

F 4
/el L =z — —
RV R ’ 520+ l.ki\/'\rlk . k= 1"2""’ n.

i

2nk

Then (2.17) implies our Corollary.
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