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It IS shown that. forI> and 1/ =, I. 2.... , the sequence

(1/ + (1 + 1).:2 ) V'"' _. increases with 11. whercv", = .v:,;' denotes the kth zero of
the generalized Laguerre polynomial, in increasing ordcr. As a consequence of this

result, the inequality! XIII. X/I c III)., t I < -'"II), I X'I i III), ' rn = I. 2, ... , I ~ k < k + I ~ fl, is
established. Similar results are proved for the zeros of Hermite polynomials. The
principal tool used is Sturm's comparison theorem in a variation due to Szegii.
( 19X7 AcadL'nllC Press, Inc

1. INTRODUCTION

For rx>-1 and 11=1,2, ... , let xllk=x( denote the kth zero of the
generalized Laguerre polynomial L;,'I(X). in increasing order.

A well-known result asserts that Xllk is positive and decreases with
increasing 11. Moreover, Szego established [6, p. 129] the stronger property
that (11 - (rx + 1)/2) Xllk decreases with increasing 11, i.e.,

(
rx+l) ( :x+I')

n+~ Xllk > n+ I+~ XII + U, rx> -1, k = 1. 2, ... , II. ( 1.1 )
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Similar investigations were made in [1, p. 251] where, among other
things, it was shown that, for fixed k, (n + (:x + 1)/2) (x nk + , - Xllk)
decreases with increasing n. Clearly this result recovers Lorch's result [4]
that X".k + 1 - Xnk decreases with n provided - 1< lI. ~ I.

It is worth mentioning that the proofs of every result recalled above is
based on the Sturm comparison theorem in the following Szego's form [6,
p. 19].

LEMMA. Let the/unctions y(x) and Y(x) he nontrivial solutions of the dir
j;'rell tial equations

Y"+/(X)\"=o. Y" + F(x) Y = 0

and let them have cOllsecutive ::eros at x" x 2 , ... , x'" alld X" X 2 , ... , X", respec­
til'e!v Oil all interval (a, h). Suppose that / and F arc continuous, that

and that

f(x) < F(x), a <x <x,,,

Theil

lim [y'(x) Y(x) - y(l) y'(x)] = o.
\" --+0

( 1.2)

k= 1,2'00" m.

This Lemma will be useful also in the proofs of Theorems J.1-1.2 of the
present paper where we are interested in the monotonicity results in n of
quantity (n+(:x+l)/2)xnk-*X;'k' n=I,2,00. and in the determinantal
inequality

I
X"k

X n + l ),:

X n .k + I I 0<.
XII + l.k + I

Precisely we shall prove the following results:

THEOREM 1.1. For - 1< lI. ~ 1 and k = 1,2'00" n, let Xllk = X~,%) he the kth
positive ::ero of the generali::ed Laguerre polynomial L~,~)(x) in increasing
order. Then (n + (:x + 1)/2) Xnk - *X;'k increases with n, i.e.,

(
:X+1) J > (lI.+l) 1 7n+ 1+-2- xn+1.k-4X~+l.k> n+-

2
- Xnk -

4
X;'k' (1.3)
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THEOREM 1.2. For a fixed:x, ~ 1 < a. ~ 1 and k = 1,2,... , n, let Xllk = X:;~I

be defined as above. Then the following determinantal inequality

I
XI/k

.'C 11 !/IIJ.

XI/kt· I I. <0
X J1 + m J. +-1 '

1 ~ k < k + 1~ n, m = 1, 2, ... (1.4 )

holds.

We observe that results similar to (1.4) have been proved for the positive
zeros of ultrapherical polynomials [2], zeros of Bessel functions [5] and
the derivative of Bessel functions [3].

2, PROOF OF THE THEOREMS

The function Y=YI/(x)=e \2XI>' 1)
/2 L:,'I(X) satisfies the differential

equation [6, p. 100J

y" +/;,(x)y=O,

where

a.+1
11+--

. 2 1 __ :x 2 I
/II(X) = +-4') ~-4'x x-

Let us carry out the following transformation

y(X) = a(x) z(t)

f = f'h(x) dx
"x

(2.1 )

(2.2)

(2.3 )

(2.4 )

where a(x), b(x) are positive, continuous, twice differentiable functions on
I = [x', x"]. If a2(x) h(x) == I on I, then z = z(t) is a solution of the differen­
tial equation

where

z" + FII(t)z = 0

317'2 - 2M" /;,(x)
FII(t) = 417 4 +/;2'

(2.5)

(2.6 )

In the proofs of our theorems we shall use two transformations of (2.1 ).
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Proof of Theorem 1.1. Let p,,(x) be defined by

It is clear that

171

(2.7 )

where

Moreover

max (
:t + 1)2

Pn(x}=Pn(.xJ= 11+-
2

-

.xn= 2n + :t + l.

where

(2.8 )

.XI/ I =.x" + 2 ~ j4.x" + 4,

Now we distinguish three cases:

(a) .X"I <x,,~ lJ <.X".2

(b) .X"2~X"+lJ

Ie) O<X"+l.k~.x"I.

On using (2.7), inequality (1.3) can be written as

k = 1, 2, ... , 11. (2.9)

Case a. By (2.8) we have immediately inequality (2.9).

Case b. By (1.1) we get

moreover by (2.7) the function p,,+ I(X) decreases with respect to x on
[.x" + 2, 70). Therefore in order to prove (2.9) it is sufficient to show that
p"(x,,,;} < p" + I(X"k(211 +:x + 1)/(2n + ex + 3)), which can be verified by direct
computation.

Case c. In (2.3) we choose a(x) and b(x) as
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Letting x' = 0 in (2.4) we find that the function .?n(t) =v~ y,,(x)
satisfies the differential equation

.:"(1) + F,,(t) .:(1) = 0,

where
4t+I--:x' .\ I

1"(1)=. +---.-
n 4X2h~(x) 16h~(x)

and

\~~x,,(l)=2:11+ j(:x+ 1)- \.111+ j(:x+ ()r--I:

Besides (2.10) we consider the differential equation

(2.10)

(2.11 )

(212)

satisfied by.:" I 1(1). If we put\" =~"I in (2.4) then h,,(x) and h" t I(X) arc
positive on 1= [()'~"I]. Now we claim that (2.10) is a Sturmian majorant
of(2.12) This will be verified if we show that the functions\,,(t)h,,(x) and
h,,(x) arc increasing with respect to n. We get

and

li X ,,( I)

('11

2.\

211 +:x + 1-
<0,

Moreover

rh,Jv)

I' ll

2n +:x + 1
------->0
211 +- :1. + 1- x

,hn(x) = [n +I(:x + I) ]x--ix' t --lx2

hence h,,(v) and xhn(x) are both increasing with 11, when t is fixed.
The limit condition (1.2) in Lemma is satisfied at I = O. Then an

application of Sturm comparison theorem gives that between the zeros of
=n(l) and =" I ,(1) the inequalities

Ink <!n' I./-' k= I. 2, ... , n

hold, where I"k = Pn(x.,d, In I I.k = p" I I(X" + I.d·
This completes the proof of Theorem 1.1

Proof 0/ Thcorcm 1.2. Applying the transformation I =c X/X"k in the dif­
ferential equation (2.1 t (i.e., h(x)= Ilx"k in (2.4)) we find by (2.6) that the
function ':,,( I) c= y,,(x) satisfies

(2.13)
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hence by (2.2)

Besides (2.13) we consider the equation

H'" + x~ + uf;, , I (x" + u I) Il' = 0

173

(2.14)

(2.15 )

satisfied by Z"+l(t)=Yn,I(X), The functions Zf/(t) and Zf/+I(r) have a
common zero at t = 1. Moreover for t> 1 we have

> [n + 1+ ~(cx + I)] XII' U - !<+ U

- [n+~(cx+ I)] xf/k+lx~k'

and the right-hand side is positive in view of Theorem 1.1. Therefore (2.15)
is a Sturmian majorant of (2.13) and an application of Lemma gives that
the next zeros of ZII+I(r) occur before the next zeros of ZII(t), that is

_X-,-f/+.:.....:..:..u'--'·'--,I < _\_f/k_+_1

.\nt I.f... X II A.

1=1,2.... ,n-k. (2.16)

This proves (1.4) for m = I. Then step by step we obtain from (2.16) the
more general inequality

_\_f/--,+_.f/--,k--,+_I < _'_".A_·+_1

X n + Ill./\. Xnt.
m= 1, 2, .... (2.17 )

which completes the proof of Theorem 1.2.
Now we apply our results to the zeros of Hermite polynomials. Let ~f/.k'

k = L 2, ..., [n/2] be the positive zeros of the Hermite polynomial Hf/(x) in
increasing order, i.e., 0 < ~1I1 < ~1I2 < ... < ~f/' [n/2]. An immediate con­
sequence of Theorem 1.2 is the following.

COROLLARY. Let ~nk (k = 1, 2, ... , [n/2J) he the posltwe zeros of the
Hermite polynomial H n(x) in increasing order. Then the inequality

I

~f/.k

~n + 2m,k

~f/.k + I 1<0
~n + 2m.k + {

holds, for k = 1, 2, ... , [n/2] and m = 1, 2, ....
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Proal By the relations between Hermite polynomials and Laguerre
polynomials [6, p. 106 ]

H21(X)=(-I)"2"n!L~, J!2)(x2)

H 211 + I(X) = (-1 )"2" + In!xL~/!2)(x2)

we have

~ /~
S In,/.: = ,,/ X 1If.:. '

c /~ k 12L, 211 + I.k = vi x Ilk' . = , ,... , n.

Then (2.17) implies our Corollary.
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